常见排序的java实现

常见排序java实现

  • 插入排序(二分插入排序)
  • 希尔排序
  • 快速排序(三数中值快排)
  • 冒泡排序
  • 选择排序
  • 堆排序
  • 归并排序
  • 基数排序
  • 计数排序
  • 桶排序
  • 睡眠排序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public class SleepSort {
/**
* 方法名:main
* 说明:睡眠排序
*/
public static void main(String[] args) {
int[] ints = {1,4,7,3,8,9,2,6,5};
SortThread[] sortThreads = new SortThread[ints.length];
for (int i = 0; i < sortThreads.length; i++) {
sortThreads[i] = new SortThread(ints[i]);
}
for (int i = 0; i < sortThreads.length; i++) {
sortThreads[i].start();
}
}
}
class SortThread extends Thread{
int ms = 0;
public SortThread(int ms){
this.ms = ms;
}
public void run(){
try {
sleep(ms*10+10);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(ms);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/**
* 文件名:SortTest.java
* 时间:2014年11月5日下午6:05:13
* 作者:修维康
*/
package chapter7;
import java.util.Arrays;
/**
* 类名:SortTest 说明:各类排序分析详解
*/
public class SortTest {
/**
* 方法名:insertionSort 说明:插入排序 时间复杂度O(N^2)
*/
public static <AnyType extends Comparable<? super AnyType>> void insertionSort(
AnyType[] a) {
for (int i = 1; i < a.length; i++) {
AnyType temp = a[i];
int j = i - 1;
while (j >= 0 && temp.compareTo(a[j]) < 0) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = temp;
}
}
/**
* 方法名:BInsertSort 说明:二分插入排序 时间复杂度O(N^2) 因为插入排序的前i - 1个元素是排好序的
* 所有将第i个元素插入到前面查到元素的时候 可以用二分查找
*/
public static <AnyType extends Comparable<? super AnyType>> void BInsertSort(
AnyType[] a) {
for (int i = 1; i < a.length; i++) {
int low = 0;
AnyType temp = a[i];
int high = i - 1;
int position = 0;
// 二分找不到时 low 的位置是大于key的最小元素,high是小于key的最大元素
while (low <= high) {
int mid = (low + high) / 2;
if (a[mid].compareTo(temp) < 0)
low = mid + 1;
else
high = mid - 1;
}
position = high;
for (int j = i; j > position && j > 0; j--)
a[j] = a[j - 1];
a[position + 1] = temp;
}
}
/**
* 方法名:shellSort 说明:希尔排序 时间复杂度(N^2) 利用增量序列 对用增量分组得到的序列进行插入排序。
*/
public static <AnyType extends Comparable<? super AnyType>> void shellSort(
AnyType[] a) {
for (int gap = a.length / 2; gap > 0; gap /= 2) {
for (int i = 0; i < gap; i++) {
for (int j = i + gap; j < a.length; j += gap) {
AnyType temp = a[j];
if (temp.compareTo(a[j - gap]) < 0) {
int k = j - gap;
while (k >= 0 && a[k].compareTo(temp) > 0) {
a[k + gap] = a[k];
k -= gap;
}
a[k + gap] = temp;
}
}
}
}
}
/**
* 方法名:bubbleSort 说明:冒泡排序 时间复杂度O(N^2)
*/
public static <AnyType extends Comparable<? super AnyType>> void bubbleSort(
AnyType[] a) {
for (int i = 0; i < a.length; i++)
for (int j = i + 1; j < a.length; j++) {
if (a[i].compareTo(a[j]) > 0) {
AnyType temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
/************ 堆排序 ***********************************/
public static <AnyType extends Comparable<? super AnyType>> void buildHeap(
AnyType[] array) {
for (int i = array.length / 2; i >= 0; i--)
shifDown(array, i, array.length);
}
/**
* 方法名:shifUp 说明:上滤,其实只用下滤就可以完成建堆,排序
*/
public static <AnyType extends Comparable<? super AnyType>> void shifUp(
AnyType[] array, int valPos) {
AnyType temp = array[valPos];
while (valPos > 0 && array[(valPos - 1) / 2].compareTo(temp) < 0) {
array[valPos] = array[(valPos - 1) / 2];
valPos = (valPos - 1) / 2;
}
array[valPos] = temp;
}
/**
* 方法名:shifDown 说明:下滤 注意数组越界
*/
public static <AnyType extends Comparable<? super AnyType>> void shifDown(
AnyType[] array, int valPos, int n) {
AnyType temp = array[valPos];
while (valPos * 2 + 1 < n) {
int child = valPos * 2 + 1;// 左儿子
if (child != n - 1 && array[child].compareTo(array[child + 1]) < 0)
child++;
if (temp.compareTo(array[child]) < 0)
array[valPos] = array[child];
else
break;
valPos = child;
}
array[valPos] = temp;
}
public static <AnyType extends Comparable<? super AnyType>> void heapSort(
AnyType[] a) {
buildHeap(a);
for (int i = a.length - 1; i > 0; i--) {
AnyType temp = a[0];
a[0] = a[i];
a[i] = temp;
shifDown(a, 0, i);
}
}
/**
* 方法名:mergeSort 说明:归并排序,JAVA中对泛型的排序用该排序,对基本类型的排序用快排
* 因为归并排序是比较次数最少的,java中对两个对象的比较 代价是昂贵的
*/
public static <AnyType extends Comparable<? super AnyType>> void mergeSort(
AnyType[] a) {
AnyType[] tempArray = (AnyType[]) new Comparable[a.length];
mergeSort(a, tempArray, 0, a.length - 1);
}
private static <AnyType extends Comparable<? super AnyType>> void mergeSort(
AnyType[] a, AnyType[] tempArray, int low, int high) {
if (low < high) {
int mid = (low + high) / 2;
mergeSort(a, tempArray, low, mid);
mergeSort(a, tempArray, mid + 1, high);
merge(a, tempArray, low, mid + 1, high);
}
}
private static <AnyType extends Comparable<? super AnyType>> void merge(
AnyType[] a, AnyType[] tempArray, int lowPos, int highPos,
int highEnd) {
int leftEnd = highPos - 1;
int temPos = lowPos;
int numElements = highEnd - lowPos + 1;
while (lowPos <= leftEnd && highPos <= highEnd) {
if (a[lowPos].compareTo(a[highPos]) <= 0)
tempArray[temPos++] = a[lowPos++];
else
tempArray[temPos++] = a[highPos++];
}
while (lowPos <= leftEnd)
tempArray[temPos++] = a[lowPos++];
while (highPos <= highEnd)
tempArray[temPos++] = a[highPos++];
for (int q = 0; q < numElements; q++, highEnd--)
a[highEnd] = tempArray[highEnd];
}
/**
* 方法名:QuickSort 说明:三数取中值快排 因为选第一个或者选最后一个可能会面对已经排好序的序列,那样会导致快排像冒泡一样
* 时间复杂度是O(N^2) 三数取中值减少这种情况
*/
public static <AnyType extends Comparable<? super AnyType>> void quickSort(
AnyType[] a) {
quickSort(a, 0, a.length - 1);
}
private static <AnyType extends Comparable<? super AnyType>> void quickSort(
AnyType[] a, int low, int high) {
if (low < high) {
int keyPos = partition(a, low, high);
quickSort(a, low, keyPos - 1);
quickSort(a, keyPos + 1, high);
}
}
/**
* 方法名:partition 说明:在原序列上进行划分,因为一个临时变量可以保存一个key,所以在key的原位置上可以插入
* 类似在key的位置上挖坑,在找到要移动的元素,挖该元素移到这个坑里,又留下另一个坑, 不断的进行下去 直到low==down。
*/
private static <AnyType extends Comparable<? super AnyType>> int partition(
AnyType[] a, int low, int high) {
AnyType key = median3(a, low, high);
while (low < high) {
while (low < high && a[high].compareTo(key) >= 0)
--high;
a[low] = a[high];
while (low < high && a[low].compareTo(key) <= 0)
++low;
a[high] = a[low];
}
a[low] = key;
return low;
}
public static <AnyType extends Comparable<? super AnyType>> AnyType median3(
AnyType[] a, int low, int high) {
int mid = (low + high) / 2;
if (a[low].compareTo(a[mid]) > 0) {
AnyType temp = a[low];
a[low] = a[mid];
a[mid] = temp;
}
if (a[mid].compareTo(a[high]) > 0) {
AnyType temp = a[mid];
a[mid] = a[high];
a[high] = temp;
}
if (a[low].compareTo(a[mid]) > 0) {
AnyType temp = a[low];
a[low] = a[mid];
a[mid] = temp;
}
AnyType tem = a[low];
a[low] = a[mid];
a[mid] = tem;
return a[low];
}
/**
* 方法名:selectSort 说明:选择排序O(N^2)的算法
*/
public static <AnyType extends Comparable<? super AnyType>> void selectSort(
AnyType[] a) {
for (int i = 0; i < a.length; i++) {
int j = selectMin(a, i);
if (i != j) {
AnyType temp = a[j];
a[j] = a[i];
a[i] = temp;
}
}
}
private static <AnyType extends Comparable<? super AnyType>> int selectMin(
AnyType[] a, int n) {
AnyType min = a[n];
int minPos = n;
;
for (int i = n + 1; i < a.length; i++)
if (a[i].compareTo(min) < 0) {
min = a[i];
minPos = i;
}
return minPos;
}
/**
* 方法名:radixSort 说明:基数排序 参数是数组和该数组中的最多位数。 O(N)的算法,将数组中的数按照从低位到高位不断的分配,收集
* 基数排序里面需要用到对1位数的稳定排序,在这里我们用到了 计数排序 作为基数排序的子程序,即将其直接映射到0-9的桶里
*/
public static void radixSort(Integer[] a, int dataNum) {
int[][] array = new int[10][a.length + 1];
for (int i = 0; i <= 9; i++)
array[i][0] = 0;
int bit = dataNum;
while (dataNum-- > 0) {
// 分配
for (int i = 0; i < a.length; i++) {
int index = ++array[getNum(a[i], bit - dataNum)][0];
array[getNum(a[i], bit - dataNum)][index] = a[i];
}
// 收集
for (int i = 0, w = 0; i < 10; i++) {
for (int j = 1; j <= array[i][0]; j++)
a[w++] = array[i][j];
array[i][0] = 0;
}
}
}
/**
* 方法名:getNum 说明:返回数n的倒数第i位数
*/
public static int getNum(int n, int i) {
int count = 0;
while (n != 0) {
int x = n % 10;
if (++count == i)
return x;
n /= 10;
}
return 0;
}
/**
* 方法名:countSort 说明:计数排序 O(N)的算法 空间换时间
*/
public static int[] countSort(int[] a) {
int[] c = new int[findMax(a) + 1];
int[] b = new int[a.length];
for (int i = 0; i < c.length; i++)
c[i] = 0;
for (int i = 0; i < a.length; i++)
c[a[i]]++;
int cNum = c.length - 1;
for (int i = a.length - 1; i >= 0; i--) {
while (cNum >= 0 && c[(cNum)] == 0)
cNum--;
;
b[i] = cNum;
c[cNum]--;
}
return b;
}
public static int findMax(int[] a) {
int max = a[0];
for (int i = 1; i < a.length; i++) {
if (a[i] > max)
max = a[i];
}
return max;
}
/**
* 方法名:bucketSort 说明:桶排序 排0-999 数量不超过1000 桶排序的思想是
* 将数组里的数按照某种映射均匀的分布在n个桶里,每个桶里的数都在一定的范围内 在对每个桶进行排序 最后按照桶的范围在合并在一起
* 在这里直接按照0-99 100-199划分桶,最后直接合并就行
*/
public static void bucketSort(Integer[] a){
Integer[][] bucket = new Integer[10][101];//定义
for(int i = 0;i < 10;i++)
bucket[i][0] = 0;
for(int i = 0; i < a.length;i++){
for(int j = 0;j< 10;j++){
if(a[i]>=100*j&&a[i] <= 100*j+99){
int index = ++bucket[j][0];
bucket[j][index] = a[i];
}
}
}
//利用快排对每个桶进行排序
for(int i = 0;i < 10;i++)
quickSort(bucket[i],1,bucket[i][0]);
//将10个桶合并
int w = 0;
for(int i = 0;i < 10;i++){
for(int j = 1;j <= bucket[i][0];j++)
a[w++] = bucket[i][j];
}
}
/**
* 方法名:main 说明:测试
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Integer[] a = new Integer[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Integer[] b = new Integer[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Integer[] c = new Integer[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Integer[] d = new Integer[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Integer[] e = new Integer[] { 991,122,333,1,44,588,656 };
Integer[] f = new Integer[] { 8, 7, 6, 8, 9, 10, 12, 5, 4 };
Integer[] g = new Integer[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Integer[] h = new Integer[] { 70, 76, 60, 65, 50, 55, 44, 42, 45, 20,
103, 103, 10004 };
int[] i = new int[] { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1003, 1003 };
Integer[] k = new Integer[]{991,122,333,1,44,588,656};
insertionSort(a);
BInsertSort(b);
shellSort(c);
selectSort(d);
heapSort(e);
quickSort(f);
mergeSort(g);
radixSort(h, 5);
i = countSort(i);
bucketSort(k);
System.out.println(Arrays.toString(a));
System.out.println(Arrays.toString(b));
System.out.println(Arrays.toString(c));
System.out.println(Arrays.toString(d));
System.out.println(Arrays.toString(e));
System.out.println(Arrays.toString(g));
System.out.println(Arrays.toString(f));
System.out.println(Arrays.toString(h));
System.out.println(Arrays.toString(i));
System.out.println(Arrays.toString(k));
}
}

闲的没事,测了下各个排序的速度。
随机填充了10W的Integer数组
对其进行各种排序
花费时间如下

  • 插入排序:21148
  • 二分插入排序:11808
  • 希尔排序:76
  • 选择排序:18919
  • 堆排序:77
  • 快速排序:257
  • 归并排序:187
  • 计数排序:90
  • 桶排序:15
    可以看到
    因为排的是Integer 所以快排并没有归并排的快